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Abstract: In this paper, the dynamics of a new fractional-order system is investigated. Firstly, the 
numerical solutions of the system by the improved predictor-corrector algorithm are obtained. Based 
on this, the dynamics of the system is analyzed by numerical simulations. A chaotic attractor and 
periodic orbits with different values of the derivative order or the system parameter are demonstrated. 

1. Introduction 
In 1990, chaos synchronization was presented by Pecora and Carroll [1] firstly. Nowadays, there 

are several different types of synchronization, such as lag synchronization [2], phase synchronization 
[3], mixed synchronization [4], projective synchronization (PS) [5] and function projective 
synchronization (FPS) [6-7], etc. Meanwhile, it is well known that FPS is characterized that the drive 
and response systems could be synchronized up to a scaling function, but not a constant. It is obvious 
that the unpredictability of the scaling function in FPS can additionally enhance the security of 
communication.   

2. The scheme of FPS  

Firstly, the following fractional-order system is taken as the drive system 
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The corresponding response system is defined as  
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where T
1 2( , , , ) m

my y y R= ∈y   is the state vector of response system (2). Meanwhile, u(x,y)  is 
the controller for the function projective synchronization of the drive system (1) and the response 
system (2). For simplicity, we assume that m n≤ . 

The synchronization error vector is defined as e = y - v(x)x , the scaling function 
( )( 1,2, , )iv x i m=  ,where T

1 2( ( ), ( ), , ( ))mdiag v x v x v x=v(x)   and is the continuously differentiable 
and limited boundary. The function projective synchronization is realized if there exist a vector 
function v(x) such that 

                                                        lim lim 0
t t→∞ →∞

= =e y - v(x)x .                                                (3) 
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If v(x) = I , then the synchronization scheme becomes the complete synchronization, and the 
anti-synchronization for v(x) = -I , where I  is a m m×  identify matrix. If c=v(x) I , c is an arbitrary 
real constant, then the projective synchronization will be realized between the drive and the response 
systems.  

In order to realize the function projective synchronization of drive and response systems, a 
compensation controller is defined as  

                              
t

qr

qr

d (v(x)x)θ(x) = - g(v(x)x)
d

,                                                     (4)   

then the synchronization controller is designed as  

u(x,y) = θ(x) + τ(x, y) ,                                                         (5) 

where τ(x, y) is a vector function. 
When the compensation controller (4) and synchronization controller (5) are substituted into the 

system (2), the response system (1) can be rewritten as in the following form  

                                       
t

qr

qr

d e = g(y) - g(v(x)x) + τ(x, y) = A(x,y)e + +τ(x, y)
d

,                                           (6) 

where A(x, y)e = g(y) - g(v(x)x) , and τ(x, y)  is a m m×  matrix.  
Theorem 1. Given the fractional-order system (1), there exists a control vector τ(x, y) = B(x,y)e  

such that the function projective between (1) and (2) can be achieved if    

                    HP[A(x, y) + B(x,y)]+[A(x,y) + B(x,y)] P = -Q ,                                 (7) 

where P and Q  are real symmetric positive define matrix, and B(x,y) , and H  stands for 
conjugate transpose of a matrix. 

3. Numerical simulations 
In this section, we will take the following fractional-order system as the drive system, and the FPS 

for the system is investigated. Meanwhil, we will consider the drive system (8) in the commensurate 
case, namely, all the derivative orders are taken as 1 2 3 0.99dq q q q= = = = . The derive system is written 
as the following form: 
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where T
1 2 3( , , )x x x=x  is the vector of the variables of the above system, and dq  is the derivative 

order.  
The response system can be described by the following fractional differential equations  
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where T
1 2 3( , , )y y y=y  is the vector of the variables of the response system, and rq  is the 

derivative order. The corresponding response system with controller is  
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Defined the synchronization error vector as  

                                           1 2 3 1 1 1 2 2 2 3 3 3( , , ) ( ( ) , ( ) , ( ) )e e e y x x y x x y x xe        .                     (11) 

where 1 2 3( ) diag( ( ), ( ), ( ))x x x xκ κ κ=κ . 
 By computation, we can get A(x, y)  is following 
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Using the theorem, the matrix B(x,y)  is chosen as 
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Hence, the error dynamical system is  
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Choose a real symmetric positive definite matrix diag(1,1,1)P  , then we can obtain 
HP[ ] [ ] =diag(-2 , -2 , -16)a b+ + +A(x, y) B(x,y) A(x,y) B(x,y) P .     (15) 

Therefore, another real symmetric positive definite matrix is chosen as (2 , 4, 16)diag aQ    , the 
expression (34) can be written as 

          H[ ] [ ] =+ + + −P A(x,y) B(x,y) A(x,y) B(x,y) P Q .              (16) 

According to the theorem, the FPS of drive system (8) and response system (9) is achieved.  
In numerical simulations, we choose 1 3 2 1 3( ) diag(1 0.1 , ,1 )x x x x x x= + + +κ . The simulation results 

are shown in the Figs.5, from which it can be seen that the error variables 1 2,e e , and 3e  converge to 
zero as 20t s→ , which implies the FPS between the drive and response systems is achieved under 
the controller.  

 
Fig.1. The FPS results between the drive and the response systems 
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4. Summary 
In this paper, a new system with fractional order with a one-scroll chaotic attractor is proposed. 

Firstly, the numerical solutions of the system by the improved predictor-corrector algorithm are 
obtained. The dynamics of the system, including chaotic attractor and periodic orbits, is analyzed by 
numerical simulations.  
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